The Display Property

A key trick to the manipulation of HTML elements is understanding that there's nothing at all special about how most of them work. Most pages could be made up from just a few tags that can be styled any which way you choose. The browser's default visual representation of most HTML elements consist of varying font styles, margins, padding and, essentially, display types.

The most fundamental types of display are inline, block-line and none and they can be manipulated with the display property and the values inline, block and none.
inline does just what it says - elements that are displayed inline follow the flow of a line. Strong, anchor and emphasis elements are traditionally displayed inline.

block puts a line break before and after the element. Header and paragraph elements are examples of elements that are traditionally displayed block-line.

none, well, doesn't display the element, which may sound pretty useless but can be used to good effect with accessibility considerations, alternate stylesheets or advanced hover effects.

The original default style-sheet for this site for example, manipulates a few traditionally in-line and block-line elements to fit the design.
h1 {

display: inline;

font-size: 2em;

}

#header p {

display: inline;

font-size: 0.9em;

padding-left: 2em;

}
This enabled the title 'htmldog.com' and the tag-line to be displayed next to each other rather than above and below each other while maintaining optimum accessibility.
#navigation, #seeAlso, #comments, #standards {

display: none;
}
The above code is used in the print-only styles to basically 'turn-off' those elements, such as navigation, which are insignificant to the single page.

display: none and visibility: hidden vary in that display: none takes the element completely out of play, where as visibility: hidden keeps the element and its flow in place without visually representing its contents. For example, if the second paragraph of 3 were set to display: none, the first paragraph would run straight in to the third whereas if it were set to visibility: hidden, there would be a gap where the paragraph should be.
Tables:

Perhaps the best way to understand the table-related display property values is to think of HTML tables. table is the initial display and you can mimic the tr and td elements with the table-row and table-cell values respectively.

The display property goes further by offering table-column, table-row-group, table-column-group, table-header-group, table-footer-group and table-caption as values, which are all quite self-descriptive. The immediately obvious benefit of these values is that you can construct a table by columns, rather than the row-biased method used in HTML.

Finally, the value inline-table basically sets the table without line breaks before and after it.

Getting carried away with CSS tables can seriously damage your accessibility. HTML should be used to convey meaning, so if you have tabular data it should be arranged in HTML tables. Using CSS tables exclusively could result in a mash of data that is completely unreadable without the CSS. Bad. And not in a Michael Jackson way.
Other display types:

list-item is self descriptive and displays as in the way that you would usually expect an HTML element to. To work properly then, elements displayed this way should be nested in a or element.

run-in makes an element either in-line or block-line depending on the display of its parent. It doesn't work on IE or Mozilla based browsers. Very helpful.

compact also makes the element inline or block-line depending on the context. It doesn't work that well either...

marker is used exclusively with the :before and :after pseudo elements to define the display of the value of the content property. The automatic display of the content property is already marker, so this is only useful if you are overriding a previous display property for the pseudo element.

